If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-14q+5=0
a = 1; b = -14; c = +5;
Δ = b2-4ac
Δ = -142-4·1·5
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{11}}{2*1}=\frac{14-4\sqrt{11}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{11}}{2*1}=\frac{14+4\sqrt{11}}{2} $
| 5u+8(u-3)=-11 | | 6x-40=2x+80 | | -2(7x-7)+4x=5(x+1) | | {2x-12}=-4x | | 3(-3-x)=-18 | | -7x+-6x=180 | | -2x^2+10x-5500=0 | | -3/7u-4/3=-3/2 | | 0.35x=993 | | 80+0.40x=60+0.90x | | 20x-1+30x-3+11x+1=90 | | 2/3(4x-1)=12x+4 | | |5t-33|=-2 | | 4e+6=9e+8 | | X*840=y | | 34=(1179)(17/36)r | | -5=x/2-3 | | 2/3+3/10c=2/3 | | 37=5w+7 | | 5.7x+8=167.6 | | 4(.25x-8=-1+4(3x+1) | | (6x-2)+(3x+2)=180 | | 31=5v+4 | | 120=(5x+20) | | 118+(2x+10)=180 | | 9u-6=5(u-6) | | 118=(2x+10) | | 5(u-2)=2u-40 | | 51=(7x+16) | | 6.3x-20=124.9 | | 51+(7x+16)=180 | | 131=(8x+11) |